

The right balance for better yield

Yield that is valued by society

More biodiversity protection

Higher yield with lower environmental impact

Less CO₂ per ton of protein produced

Help farmers make a living

Controlling key fungal diseases is essential for better yield

Crop damage & loss

Combat diseases with high efficacy

Resistant pathogens

Manage resistance effectively

Off-target effects

Ensure selectivity

Regulatory changes

Anticipate regulation

Volatile weather conditions

Foster climate resilience

The multiple facets of crop production require a new approach in R&D

Transformative approach in crop protection R&D focuses on three elements

Parallel approach

optimizing performance and regulatory requirements

Digitalization of R&D

accelerating screening and development

Addressing crop system needs

offer a combination of solutions

Historically, industry used a linear approach to maximize performance prior to environmental testing

- Performance and cost optimization first to find most promising candidates
- Regulatory tests to ensure safety for humans and the environment only with finalized candidates
- In case of negative results, candidates had to be stopped late in the process leading to fewer advancing molecules

BASF adapted research process to a parallel approach

New research process better meets sustainability requirements in an early stage

- Identify potential off-target effects early on
- Develop in-vitro tox predictors to minimize animal testing
- Optimize regulatory requirements and performance in parallel
- Support chemical optimization with 3D modelling

Newly implemented research process increases effectiveness to align environmental requirements with field performance

Disease control and off-target effects were decoupled with the help of molecular modelling

Structure design supported by 3D-Modelling

Desired inhibition

Molecular target of triazole fungicides fungal CYP51¹

target assay developed

Undesired inhibition

Aromatase (CYP19²) affected by triazoles

in vitro / in vivo correlation successful

Design & synthesis of novel triazole with

Increased target (CYP51) inhibition

Reduced off-target (CYP19) inhibition

This new methodology in the R&D approach led to the discovery of Revysol®

Understanding the molecular properties was key to optimizing delivery and performance through formulation

- Higher solubility of active ingredients
 - enables easy uptake by the plant
 - is susceptible to washout in rain events
- Revysol® active ingredient has a lower solubility than other azoles
- Special formulation of Revysol[®] enhances uptake despite low solubility

A targeted approach was necessary to reach the fungicidal target in the plant

Formulation innovation needed to enable outstanding stability and uptake

- Standard formulation practices could not dissolve Revysol[®] sustainably and durably
- Computer-aided simulation with different emulsifiers used to predict optimal behavior of Revysol[®] in water
- Over 100 different formulations tested for uptake and translocation

Modeling process to optimize stability in water

Revysol® molecules (grey) and the tested emulsifiers (green) to keep Revysol® dissolved. The simulation and predictive modeling process resulted in the use of specific emulsifiers that coat the surface of the Revysol® molecules and avoid crystallization.

Through computer modeling, a customized emulsifying system was found to turn the low solubility into long-lasting protection

Tailor-made formulation protects Revysol® from weather effects, reducing application per hectare

BASF's formulation experts increased sustainability by optimizing the behavior of the molecule in the plant

the formation of an inner-leaf reservoir

Transformative approach in R&D enables sustainable, new-generation solutions like Revysol®

Higher yield on less land

Favorable environmental profile

Control of resistant fungi

Independent of weather conditions

Long-lasting performance

- Revysol[®] enables farmers to protect their crops and farm sustainably
 - ➤ Yield protection and resource efficiency: up to 1/3 less active ingredient per wheat hectare
 - Productive land use and protection of natural habitats: 4% less wheat area needed
 - Beyond wheat, Revysol® was optimized on more than 40 crops

- Successful market introductions across the globe confirm blockbuster potential of > €1 billion projected peak sales
- Strong support of our target of reduce CO₂ emissions per ton of crop by 30%

We create chemistry